US009128912B2

a2z United States Patent (10) Patent No.: US 9,128,912 B2
Kamiya 45) Date of Patent: Sep. 8, 2015
(54) EFFICIENT XML INTERCHANGE SCHEMA g%gg,ggg g%: gggg [Zjh?}lln(}i;a etal. . ;?ggéi
DOCUMENT ENCODING et CIUaA o
8,606,806 B2* 12/2013 Barasetal. 707/761
. . 8,713,426 B2* 4/2014 Idiculaetal. 715/235
(75) Inventor: Takuki Kamiya, Palo Alto, CA (US) 8,943,481 B2* 1/2015 Gharavy etal. . 717137
2003/0046317 Al* 3/2003 Cserietal. 707/513
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) %882; 8(1)25347‘2 ﬁi: ggggg Erisjl_ltl}?llswﬁi et al~1 ~~~~~ ;?2%%2
anditharadhya et al. ...
. 2006/0059169 Al* 3/2006 Armishevccco... 707/100
(*) Notice: Subject. to any dlsclalmer,. the term of this 2006/0085489 ALl* 472006 Tomic ef al. 07200
patent is extended or adjusted under 35 2006/0182138 Al* 82006 Kamiya 370/452
U.S.C. 154(b) by 476 days. 2006/0184547 Al* 82006 Kamiya 707/100
2006/0184562 Al* 82006 Kamiya 707/102
. 2006/0184873 Al* 82006 Kamiya 715/513
(21) Appl. No.: 13/554,862 2006/0184874 Al* 82006 Kimiya ... L 715/513
. 2006/0212799 Al* 9/2006 Kamiya 715/513
(22) Filed: Jul. 20, 2012 2006/0212800 AL* 9/2006 Kamiya 715/513
2006/0218161 Al* 9/2006 Zhangetal. 707/100
(65) Prior Publication Data (Continued)
US 2014/0026029 A1l Jan. 23, 2014 OTHER PUBLICATIONS
(51) Int.CL World Wide Web Consortium. Extensible Markup Language (XML)
GO6F 17/00 (2006.01) 1.0 (Fitfth Edition), ed. Tim Bray et al. W3C Recommendation Nov.
GOG6F 17/22 (2006.01) 26, 2008. http://www.w3.org/ TR/xml/.
(52) US.CL (Continued)
CPC GO6F 17/2205 (2013.01); GOGF 17/2247
. . (20.13'01); GO6F 17/2258 (2013.01) Primary Examiner — Scott Baderman
(58) gl;lcd of Classification Search GOGF 1712247 Assistant Examiner — Barbara Level
See application file for complete search history. (74) Attorney, Agent, or Firm — Maschoff Brennan
(56) References Cited 7 ABSTRACT

U.S. PATENT DOCUMENTS

7,111,076 B2* 9/2006 Abjanicetal. 709/246
7,143,346 B2* 11/2006 Dunneetal. 715/234
7,581,177 B1* 8/2009 Molliconeetal. 715/243
7,587,667 B2* 9/2009 Scardinaetal. 715/230
7,603,654 B2* 10/2009 Kharitidi etal. 717/106
7,886,223 B2* 2/2011 Shettyetal. 715/234
7,933,928 B2* 4/2011 Chandrasekar et al 707/802
7,992,081 B2* 82011 Medietal. ... 715/237
8,156,213 B1* 4/2012 Dengetal. ... 709/223
8,185,565 B2* 5/2012 Ishizaki ..o 707/809
8,191,040 B2* 5/2012 Hejlsbergetal. 717/114

A method of reducing the size of a simpleType element in an
Efficient XML Interchange (EXI) schema document may
include modifying each simpleType element in an XSD docu-
ment by eliminating one or more facets from each simpleType
element. The method may also include encoding the XSD
document into an EXI schema document by transforming
each modified simpleType element in the XSD document
from an XSD simpleType element with start and end tags to
an encoded EXI simpleType element expressed as a sequence
of bits.

20 Claims, 13 Drawing Sheets

/ 500

Identify Each simpleType Element

| _-502

] L

——————————— -
|

r Modify Each simpleType Element By Eliminating One

504

| Or More Facets From Each simpleType Element |
—

-

|

Transform Each Modified simpleType
Element From An XSD simpleType Element 506
To An Encoded EXI simpleType Element
[Encode One O liF'IdItA ””” b
! ncode One Or More Fields Into | ~550

| Single Fixed-Length Auxiliary Field |

e .}

US 9,128,912 B2

Page 2
(56) References Cited 2012/0233573 Al* 9/2012 Sullivanetal. 715/848
2012/0254725 Al* 10/2012 Doi ..ccceovevvnnnee .. 715/234
U.S. PATENT DOCUMENTS 2013/0018924 Al* 12013 Connor et al. . 707/804
2013/0069806 Al* 3/2013 Ohetal.ccooervrneee. 341/95
2007/0005786 Al* 1/2007 Kumaretal. .oovoiivr. 709/230 2013/0103721 Al* 4/2013 Doietal.cccocvvrenenne 707/802
2007/0061706 Al* 3/2007 Cupalaetal. ... 715/513 2013/0104033 A1* 42013 Doictal. ... 715234
2007/0136221 Al* 62007 Sweeney et al. 90620 2013/0339526 Al* 12/2013 Ruellan et al. ... 709/226
2007/0143664 Al* 6/2007 Fangetal. ... 715/513 2014/0026029 Al* 1/2014 Kamiya ... - 715/234
2007/0162479 Al* 7/2007 Begunetal. 707/101 2014/0026030 Al* 1/2014 Kamiya ... - 7151234
2008/0017722 A1* 1/2008 Snyder et al. e 235/494 2014/0070966 A1l* 3/2014 Fablet etal.cconvene 341/55
2008/0104579 Al* 5/2008 Hartmann 717/136 2014/0281912 Al* 9/2014 Doi 715/234
2008/0120351 Al* 5/2008 Khaladkaretal. 707/204 2014/0297692 Al* 102014 DOI cooveciiiciiiseiiiiiinne 707/803
2008/0183736 Al* 7/2008 Westerinen et al. 707/101
2008/0306971 Al* 12/2008 Martinez Smith et al. ... 707/100 OTHER PUBLICATIONS
N :
%883;8}%32?2 ﬁ} * ggggg ;f(ircnlﬁ/: ot al ;8;;}8(1) World Wide Web Consortium. Efficient XML Interchange (EXI)
2009/0198722 Al* 8&/2009 Hanson et al. .. 707/102 Format 1.0, ed. John Schneider et al. W3C Recommendation Mar. 10,
2009/0210783 Al* 82009 Bellessort 715/234 2011. http://www.w3.org/TR/exi/.
2009/0271695 Al* 10/2009 Ruellan et al. 715/227 World Wide Web Consortium. W3C XML Schema Definition Lan-
2009/0287625 Al* 11/2009 Fablet et al. 706/45 guage (XSD) 1.1 Part 1: Structures, ed. Henry S. Thompson et al.
2010/0010995 A1* 1/2010 Fabletetal.coovnnee 707/6 W3C Recommendation Apr. 5, 2012. http://www.w3.0org/TR/
2010/0058169 Al: 3/2010 Demant et al. .. 715/234 xmlschemal 1-1/.
%8}8;88% }(7)(1) ﬁ} % 431%8}8 Banotnilitﬂi. ;}gg?é World Wide Web Consortium. W3C XML Schema Definition Lan-
2010/0153837 Al* 6/2010 Bellessortet al. 715234 ~ 8vage (XSD) L.1 Part 2: Datatypes, ed. David Peterson et al. W3C
2010/0318370 Al* 12/2010 Bhattacharyya et al. 705/1.1 ~ Recommendation — Apr. 5, 2012. http://www.w3.org/TR/
2011/0010614 Al* 1/2011 Fabletetal. 715/234 ~ xmlschemall-2/.
2011/0153531 Al* 6/2011 Ishizaki 706/12 World Wide Web Consortium. Efficient XML Interchange (EXI)
2012/0124017 Al* 5/2012 Heueretal. . . 707/693 Profile, ed. Youenn Fablet et al. W3C Working Draft. Apr. 10, 2012.
2012/0134287 Al* 5/2012 Turunen et al. ... 370/252 http://www.w3.org/ TR/exi-profile/.
2012/0150828 Al* 6/2012 Fabletetal. 707/693
2012/0159306 Al* 6/2012 Sharmaetal. 715/234 * cited by examiner

US 9,128,912 B2

Sheet 1 of 13

Sep. 8, 2015

U.S. Patent

Zhh
JuBLINO0Q
IX3

f

f

YOI
dIx3

f

f

f

f

f

| 70l
LOmMOOOL

f

f

} "Bi4

80}
juswnooq
BWIYIS X3

0L
JuswIN20(

TAX

204
13pooug
BWBYIS X3

90}
JUSWINO0(]

asxXx

///loc“

U.S. Patent Sep. 8, 2015 Sheet 2 of 13 US 9,128,912 B2

fzoo

public static final int NODE_TYPE = 0;

public static final int TYPE_NAME = 1;

public static final int TYPE_TARGET_NAMESPACE = 2,

public static final int TYPE_NUMBER = 3;

public static final int TYPE_GRAMMAR = 4;

public static final int SIMPLE_TYPE_AUX = 5;

public static final int SIMPLE_TYPE_FIELD_INT = 6;

public static final int SIMPLE_TYPE_NEXT_SIMPLE_TYPE =7,

Fig. 2

U.S. Patent Sep. 8, 2015 Sheet 3 of 13 US 9,128,912 B2

/—300

static final int NODE_TYPE = 0;

static final int TYPE_NAME = 1;

static final int TYPE_TARGET_NAMESPACE = 2;

static final int TYPE_NUMBER = 3;

static final int TYPE_BASE_TYPE =4;

static final int TYPE_BOOLEANS = 5;

static final int TYPE_ISURTYPE_MASK = 0x0001;

static final int TYPE_ISFIXTURE_MASK = 0x0002;

static final int SIMPLE_TYPE_VARIETY = 6; // atomic, list or union
static final int SIMPLE_TYPE_AUX_TYPE =7;

static final int SIMPLE_TYPE_BOOLEANS = §;

static final int SIMPLE_TYPE_ISBUILTIN_MASK = 0x0001;

static final int SIMPLE_TYPE_ISPRIMITIVE_MASK = 0x0002;

static final int SIMPLE_TYPE_ISNUMERIC_MASK = 0x0004;

static final int SIMPLE_TYPE_ISLIST_CONTENT_MASK = 0x0008;
static final int SIMPLE_TYPE_ISENUM_CONTENT_MASK = 0x0010;
static final int SIMPLE_TYPE_ISEMPTIABLE_MASK = 0x0020;

static final int SIMPLE_TYPE_FACET_LENGTH =9; // int

static final int SIMPLE_TYPE_FACET_MINLENGTH =10: // int

static final int SIMPLE_TYPE_FACET_MAXLENGTH = 11; // int

static final int SIMPLE_TYPE_FACET _WHITESPACE =12; // int

static final int SIMPLE_TYPE_FACET_MAXINCLUSIVE = 13; // variant
static final int SIMPLE_TYPE_FACET_MAXEXCLUSIVE = 14; // variant
static final int SIMPLE_TYPE_FACET_MINEXCLUSIVE = 15; // variant
static final int SIMPLE_TYPE_FACET_MININCLUSIVE = 16; // variant
static final int SIMPLE_TYPE_FACET_TOTALDIGITS =17; // int

static final int SIMPLE_TYPE_FACET_FRACTIONDIGITS = 18; // int
static final int SIMPLE_TYPE_N_FACET_PATTERNS =19; // int

static final int SIMPLE_TYPE_N_FACET_ENUMERATIONS = 20; // int
static final int SIMPLE_TYPE_N_MEMBER_TYPES = 21;

static final int SIMPLE_TYPE_NEXT_SIMPLE_TYPE = 22;

Fig. 3
Prior Art

US 9,128,912 B2

Sheet 4 of 13

Sep. 8, 2015

U.S. Patent

p "Bl
(sdAyereq Ues|00g J04)
80usssld uished (Z) puy o usamiag s| ssnjep UIpIp Jabsju| usypp)
80UBSaId uonesswnUg UIpIAA Jabaju| anjeA SAISN[OIUI O] JajuI0d
A~ A 7
s Y
AN
{ \ v { v
Aauep piAnssoue 8oedsajym SOu#

ST\

U.S. Patent Sep. 8, 2015 Sheet 5 of 13 US 9,128,912 B2

/500
(Begin)

Y

|dentify Each simpleType Element | —502

I I j

: Modify Each simpleType Element By Eliminating One :_/504
| Or More Facets From Each simpleType Element |
_

Transform Each Modified simpleType
Element From An XSD simpleType Element 506
To An Encoded EXI simpleType Element

l Encode One Or More Fields Into A L/550
| Single Fixed-Length Auxiliary Field |

U.S. Patent Sep. 8, 2015 Sheet 6 of 13 US 9,128,912 B2
(Begin >
550
552 J
N {
Store Variety Value
554
Is simpleType . .
Element A Union, Union Or List

List, Or Atomic
Variety?

Atomic

556
\

Store Enumeration
Presence Value And
Ancestry |dentifier Value

558

Is simpleType
Element A Boolean
Atomic Variety?

Yes

Store A Pattern Presence Value
560

562

Is simpleType
Element A String
Atomic Variety?

Yes

Store A Whitespace Value And
A Restricted Characters Value
564

566

Is simpleType Ves

Store An Integer Width Value And

Fig. 58

Element An Integer A Mininclusive Pointer Value
Atomic Variety? 568
Y
= End)=
—/

U.S. Patent Sep. 8, 2015 Sheet 7 of 13 US 9,128,912 B2

<xsd:schema targetNamespace="urn:foo"

|
|
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"> :
|

— 1
<xsd:simpleType name="boolean_Sample"> L/»602
—————————————————— i
<xsd:restriction base="xsd:boolean"> :

-
| |
| = |
| | <xsd:pattern value="true"/> ||
| L -
|L </xsd:restriction> |

|_</xsd:simpIeType>

[]
<xsd:simpleType name="integer_Sample"> | 604
—————————————————— | |
|r<xsd:restriction base="xsd:integer"> | f—/
|
|
|
|
|
|

L<xsd:max|nclusive value="65"/> J

] </xsd:restriction>

__________________ _
| IsdsimpleType>]
| <xsd:simpleType name="string_Sample"> | 606
7 osdaionbssadsings 1L |
N et e A |
| L<xsd:wh|teSpace value="preserve"/>4l | |
N [|
| | | <xsd:pattern value="[0-9]*"/> |1 |
| = =0 |
: | </xsd:restriction> JI : |

__________________ |
| S | |
| podsimpleType> 4 |

|

US 9,128,912 B2

Sheet 8 of 13

Sep. 8, 2015

U.S. Patent

L b4
ssaippy 2dAL
qSH qSH TTT000TT 170000000 00000000 00000000 oldwis XN | [£+4ppeliul
ue2|00q: psx 4 TTT0T000 00000000 00000000 00000000 adAL sseg | [9-+ippefiul
18Z anjeA
aysodwo) 182 T00TT000 70000000 00000000 00000000 | sug Ateqixny | [G+4ppefiu
SSalppy
9/6 9/6 0000TOTT 11000000 00000000 00000000 Jewwess | [p+Ippeliul
JaquinN
0S 0S 0TO0TTO0 00000000 00000000 00000000 [euas adAl | [¢+Jppelul
00j:un b 00100000 00000000 00000000 00000000 N | [z+ppelu
9|dwes uesjooq T 10000000 00000000 00000000 00000000 aweN | [T+4ppeliul
adAl aydwis LSC 10000000 70000000 00000000 00000000 adA] apoN [ippeul
anjea
anje = NA A NA =]
IeA jewpag v 91Ag € 9JAd T 93Ag 0 23Ag PP
9|dwes uesjooq

00/ \

US 9,128,912 B2

Sheet 9 of 13

Sep. 8, 2015

U.S. Patent

8 "bi4
Ssaippy 2dAL
LEY LEY TOTOTTOT 10000000 00000000 00000000 oldwis eN | [£+4ippeliu
19b633ur:psx G8T TOOTTTOT 00000000 00000000 00000000 adA| sseg | [9+Ippeliul
109¢¢Z @njep
aysodwo) 10922, TOOTOTOT 01100000 TT0T0000 00000000 | sug Adelixny | [G+ippeliul
SSa.ppyY
8€6 8¢6 0TOTOTOT 71000000 00000000 00000000 dewweus | [H+ippeliul
JaquinN
117 1217 0000TT00 00000000 00000000 00000000 leuss adAL | [¢+Appeliul
004:uIn v 00700000 00000000 00000000 00000000 N | [g+ppelu
a|dwes Jsbaju ¥ 00700000 00000000 00000000 00000000 sweN | [1+Ippeliu
adA) aiduis VAY4 10000000 10000000 00000000 00000000 adA1 apoN [ippeul
anjeaA
anje =) 2NA A INA =]
IeA [ewpag b 91Ag € 91Ag T 91Ag 0 91Ag Pl

9|dwes 1abajul

008 \

US 9,128,912 B2

Sheet 10 of 13

Sep. 8, 2015

U.S. Patent

6 Bi4
Ssalppy odA
auou 1- TTITTTITTI TTITTTTTT TTITTTTTT TITTTTITT | oidwiS xaN | [Z+4ppeliul
Bulis:psx ! 0TTT0000 00000000 00000000 00000000 adAl sseg | [9-+ippeliul
£TS0T anjep
aysodwo) £1S0T T000T000 T00TOT00 00000000 00000000 | sug Adenixny | [S+ippelul
SS24ppy
$10T $10T OTTOTTIT 11000000 00000000 00000000 lewwess | [p+Ippel
JaquinN
ZS ZS 00TOTTO00 00000000 00000000 00000000 leuss adAl | [¢+ippeiul
0oj:uin v 00700000 00000000 00000000 00000000 N | [z+ppelu
s|dwes buLis 9 0TT00000 00000000 00000000 00000000 aweN | [1+Jppelul
adAl sdwis /SC 70000000 70000000 00000000 00000000 SdAl spoN [ippeiul
anjeA
anje = ANA A NA 1
IeA [ewag v 91Ag € 9)Ag T °1Ag 0 9lAg ETE|

9|dwes bulis

006 .\

US 9,128,912 B2

Sheet 11 of 13

Sep. 8, 2015

U.S. Patent

Jy Joud
 gpuopenumoy _ voby o goruoporuuog
SSa.ppY
Bus:psx 6ET TT0T000T 00000000 00000000 00000000 | =dAL ui-ying | [Z+ippeliul
aluoje l 0T000000 00000000 00000000 00000000 Ajouep [9+4ppefiul
0 °njeA syg
ay1sodwo) 0 00000000 00000000 00000000 00000000 | uesjoog adA| [S+4ppeliul
SSa.ppY
Bunys:psx 6ET TTOTO0O0T 00000000 00000000 00000000 adA] sseg [f+Appeliul
JaquinN
(4] [4) 00TOTTO0 00000000 00000000 00000000 [eues odAL | [c+Jppeliul
00j:uin € TT000000 00000000 00000000 00000000 N | [e+ippeu
9|dwes bulns 91 00001000 00000000 00000000 00000000 aweN | [T+ippeliu
adAL sduis yAT4 T0O000000 T0000000 00000000 00000000 9dAL spoN [Appefiul
anjeA
onje
IeA [ewsg v o1Ag € 9Ag T 9Ag 0 @1Ag PIod
o|dwes buliys
%E\

US 9,128,912 B2

Sheet 12 of 13

Sep. 8, 2015

U.S. Patent

uy Joid

 opuopenumoy o g0, b4 o oopuoponuuoy
12084

auou - | trovvonr| o rvvovvon| o wronooon| o trnnnTIn| eaisnpuruiw | [97-+appeliur
19084

auou T- TTTITTITTIT TTTTTTITT TTTTTITTT TTTITTITTIT SAISnPxJuiw | [GT+4ppeliul
19084

auou T- TTTTTTTIT TTTTITTTIT TTTTTTTT TITTITITT | @AIsnpx3axew | [H1+ppeliul
12084

=uou T- TTTITTTIT TTTTTITTIT TTTTITTIT TTITTTTIT SAISnpuUIXew | [€T+Jppeliul
12084

aAlasaud 0 00000000 00000000 00000000 00000000 soedsanym | [z1+Jppeliul
19084

auou T- TTTITTTTIT TTTTITTITT TTTTTTTT TTTITTITTIT yibuaxew | [TT+4ppeliul
12084

2uUouU T- TTTTTTTIT TTTTITTTIT TTTTTTTT TTTTTTTIT yibusuiw | [0T+/ppeliul

suou T- TTTITTTIT TTTTTITTIT TTTTITTIT TTITTTTIT 19084 Yibua [6+4ppeliul
0 onjep Sjig ues|oog

aj1sodwo) 0 00000000 ooooooo@ 00000000 00000000 adA]sidwis [8+4ppeliul

V0 uQ penunuod

US 9,128,912 B2

Sheet 13 of 13

Sep. 8, 2015

U.S. Patent

v

g0} uQ panunuo)

py Joud
004 614

ssauppy 2dAL

auou I- TTTTTTIT TITTTITT TTTITTIT TITTTITTT a|duis 1N | [zz+ippeliul
sadAl

0 0 00000000 00000000 00000000 00000000 | 4eqwaly JO # | [TZ+ippelul
suonelawnul

0 0 00000000 00000000 00000000 00000000 J0 # | [0z+appeliul

(6-0-"21) 0T 0T 0TOT0000 00000000 00000000 00000000 SOY 4o # | [6T+ippeliul
19014

suou T- TTTTTTIT TITTTITT TTTTTTIT TITTTTTT | swbiguonoely | [8T+Ippeliul
19084

suou T- TTTTTTIT S:Sﬂw TTTTTTIT TITTTTTT subigieloy | [£1-+4ppefiul

US 9,128,912 B2

1
EFFICIENT XML INTERCHANGE SCHEMA
DOCUMENT ENCODING

FIELD

The embodiments discussed herein are related to Efficient
XML Interchange (EXI) schema documents.

BACKGROUND

Extensible Markup Language (XML) is a markup lan-
guage that defines a set of rules for encoding documents in a
plain-text format that is both human-readable and machine-
readable. One version of XML is defined in the XML 1.0
Specification produced by the World Wide Web Consortium
(W3C) and dated Nov. 26, 2008, which is incorporated herein
by reference in its entirety. The XML 1.0 Specification
defines an XML document as a text that is well-formed and
valid.

An XML schema is a description of a type of XML docu-
ment, typically expressed in terms of constraints on the struc-
ture and content of documents of that type, above and beyond
the basic syntactical constraints imposed by the XML 1.0
Specification itself. These constraints are generally expressed
using some combination of grammatical rules governing the
order of elements, boolean predicates associated with the
content, data types governing the content of elements and
attributes, and more specialized rules such as uniqueness and
referential integrity constraints. One example schema lan-
guage in widespread use is the XML Schema Definition
(XSD) language as defined in the XSD 1.1 Specification
produced by the W3C and dated Apr. 5, 2012, which is incor-
porated herein by reference in its entirety.

The process of checking to see if an XML document con-
forms to an XSD document is called validation, which is
separate from XML.’s core concept of syntactic well-formed-
ness. All XML documents are defined as being well-formed,
but an XML document is on check for validity where the
XML processor is “validating,” in which case the document is
checked for conformance with its associated XSD document.
An XML document is only considered valid if it satisfies the
requirements of the XSD document with which it has been
associated.

Although the plain-text human-readable aspect of XML
and XSD documents may be beneficial in many situations,
this human-readable aspect may also lead to XML and XSD
documents that are large in size and therefore incompatible
with devices with limited memory or storage capacity. Efforts
to reduce the size of XML and XSD documents have there-
fore often eliminated this plain-text human-readable aspectin
favor of more compact binary representations.

EXI is a Binary XML format. EXI is one of the most
prominent binary XML efforts to encode XML documents in
a binary data format rather than plain text. In general, using a
binary XML format reduces the size and verbosity of XML
documents, and may reduce the cost in terms of time and
effort involved in parsing XML documents. EXI is formally
defined in the EXI Format 1.0 Specification produced by the
W3C and dated Mar. 10, 2011, which is incorporated herein
by reference in its entirety. An XML document may be
encoded in an EXI format as a separate EXI document. An
XSD document may also be encoded as a separate EXI
schema document.

When an XSD document is encoded as an EXI schema
document, the EXI schema document generally includes vari-
ous encoded data fields that are employed in validation tasks.
Unfortunately, however, the inclusion of these various

10

15

20

25

30

35

40

45

50

55

60

65

2

encoded data fields may cause the size of the EXI schema
document to remain relatively large in size. This relatively
large size may be problematic where the EXI schema docu-
ment is transferred to an EXI processor that is employed in a
device with limited memory or storage capacity.

The subject matter claimed herein is not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background is only provided to illustrate one example tech-
nology area where some embodiments described herein may
be practiced.

SUMMARY

According to an aspect of an embodiment, a method of
reducing the size of a simpleType element in an EXI schema
document may include modifying each simpleType element
in an XSD document by eliminating one or more facets from
each simpleType element. The method may also include
encoding the XSD document into an EXI schema document
by transforming each modified simpleType element in the
XSD document from an XSD simpleType element with start
and end tags to an encoded EXI simpleType element
expressed as a sequence of bits.

The object and advantages of the embodiments will be
realized and achieved at least by the elements, features, and
combinations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will be described and explained
with additional specificity and detail through the use of the
accompanying drawings in which:

FIG. 1 is a block diagram of an example EXI processing
system,

FIG. 2 illustrates an example EXI schema simpleType
datatype according to at least some embodiments described
herein;

FIG. 3 illustrates a prior art EXI schema simpleType
datatype;

FIG. 4 illustrates an example layout of an auxiliary field in
the example EXI schema datatype of FIG. 2;

FIG. 5A is a flow chart of an example method of reducing
the size of a simpleType element in an EXI schema document;

FIG. 5B is an expanded flow chart of an example method of
one block of the example method of FIG. 5A;

FIG. 6 illustrates an example XSD document;

FIG. 7 illustrates an example atomic boolean simpleType
element of the XSD document of FIG. 6 that has been
encoded according to the example EXI schema datatype of
FIG. 2;

FIG. 8 illustrates an example atomic integer simpleType
element of the XSD document of FIG. 6 that has been
encoded according to the example EXI schema datatype of
FIG. 2;

FIG. 9 illustrates an example atomic string simpleType
element of the XSD document of FIG. 6 that has been
encoded according to the example EXI schema datatype of
FIG. 2; and

FIGS. 10A-10C illustrate an example string element of the
XSD document of FIG. 6 that has been encoded according to
the prior art EXI schema datatype of FIG. 3.

US 9,128,912 B2

3
DESCRIPTION OF EMBODIMENTS

Some embodiments described herein may include methods
of reducing the size of a simpleType element in an EXI
schema document. For example, some embodiments
described herein may include a method of reducing the size of
a simpleType element in an EXI schema document where the
EXI schema document is targeted for non-validation tasks.
Because validation tasks employ validation-specific data
fields of a simpleType element, where an EXI schema docu-
ment is targeted for a non-validation task, the size of the
simpleType element in the EXI schema document may be
reduced by eliminating these validation-specific data fields.

As used herein, the term “document” refers to any elec-
tronic document, stream, or file. Therefore, as used herein, the
phrase “EXI schema document” is synonymous with “EXI
schema stream” or “EXI schema file”

Embodiments of the present invention will be explained
with reference to the accompanying drawings.

FIG. 1 is a block diagram of an example EXI processing
system 100, arranged in accordance with at least some
embodiments described herein. The EXI processing system
100 may include an EXI schema encoder 102 and an EXI
processor 104. An example EXI schema encoder and an
example EXI processor are included in the OpenEXI project
hosted at SourceForge.net. The source code and documenta-
tion of the OpenEXI project as of the filing date of the present
application are incorporated herein by reference in their
entirety. The EXI schema encoder 102 is configured to
receive as input an XSD document 106 and encode the XSD
document 106 into an EXI schema document 108. For
example, the EXISchemaFactory of the OpenEXI project
may be employed as the EXI schema encoder 102. The EXI
schema document 108 may then be received as input to the
EXIT processor 104 and used when converting between an
associated XML document 110 and its corresponding EXI
document 112. The EXI processor 104 may be employed in a
device with limited memory or storage capacity.

FIG. 2 illustrates an example EXI schema simpleType
datatype 200 according to at least some embodiments
described herein. The example EXI schema datatype 200 may
be employed by the EXI schema encoder 102 of FIG. 1 when
encoding the XSD document 106 into the EXI schema docu-
ment 108. In the illustrated embodiment, the EXI schema
datatype 200 includes eight (8) fields that each occupies four
(4) bytes in memory. Therefore, the EXI schema datatype 200
occupies thirty-two (32) bytes in memory (i.e. 8 fieldsx4
bytes=32 bytes) according to some embodiments. It is under-
stood that the specific number of fields in the example EXI
schema datatype 200 may differ in other embodiments from
the number shown in FIG. 2. It is further understood that the
number of bytes that each field occupies in memory in the
example EXI schema datatype 200 may differ in other
embodiments from the number shown in FIG. 2.

FIG. 3 illustrates a prior art EXI schema simpleType
datatype 300. The prior art EXI schema simpleType datatype
300 includes twenty-three (23) fields that each occupies four
(4) bytes in memory. Therefore, the prior art EXI schema
simpleType datatype 300 occupies ninety-two (92) bytes in
memory (i.e. 23 fieldsx4 bytes=92 bytes). Thus, the example
EXI schema simpleType datatype 200 occupies 65% less
memory space than the prior art EXI schema simpleType
datatype 300 (i.e. 100%-32 bytes/92 bytes=65%). This
reduction in the amount of memory occupied by the example
EXI schema simpleType datatype 200 reduces the size of a
simpleType element in an encoded EXI schema. This reduc-
tion in the amount of memory may generally be accomplished

5

10

15

20

25

30

35

40

45

50

55

60

65

4

by eliminating various validation-specific facets from each
simpleType element. The term “facet” as used herein refers to
a facet as defined in the EXI Format 1.0 Specification.

For example, a comparison of the example EXI schema
simpleType datatype 200 and the prior art EXI schema
simpleType datatype 300 reveals that various facets may be
eliminated from each simpleType element in an XSD docu-
ment. Then, when the XSD document is encoded into an EXI
schema document, the prior elimination of these facets may
result in a reduction in the size of each simpleType element in
the encoded EXI schema document. The encoded EXI
schema document may then be utilized in any task other than
XML validation. Examples of non-validation tasks include,
but are not limited to, encoding an XML document into an
EXI document, decoding an XML, document from an EXI
document, encoding an XML document into a Comma-Sepa-
rated Values (CSV) document, a flat file document, or a Java-
Script Object Notation (JSON) document; and decoding an
XML document from a CSV document, a flat file document,
or a JSON document.

As suggested by a comparison of the example EXI schema
simpleType datatype 200 and the prior art EXI schema
simpleType datatype 300, the eliminated facets may include
length, minLength, maxLength, pattern, maxInclusive, max-
Exclusive, minExclusive, totalDigits, and fractionDigits for
all varieties of simpleType elements. In addition, the elimi-
nated facets may further include minlnclusive for each
simpleType element other than integer atomic variety simple-
Type elements that are a bounded integer. Moreover, the
eliminated facets may further include whitespace for each
simpleType element other than string atomic variety simple-
Type elements.

Instead of outright elimination of a particular facet, the
facet may instead be reduced in size and combined with other
facets in a composite auxiliary field, thereby maintaining at
least a portion of the facet value while still furthering the goal
of an overall reduction in the size of the corresponding
simpleType element. FIG. 4 illustrates an example layout 400
of the SIMPLE_TYPE_AUX field in the example EXI
schema simpleType datatype 200 of FIG. 2. The example
layout 400 includes thirty-two (32) bits that, depending on the
variety of the simpleType element, are used as various data
fields to encode corresponding data values. For example, the
data fields of the example layout 400 may be used to encode
at least a portion of various facet values, thereby reducing the
amount of memory used by not storing the entire facet value.

For example, the example layout 400 includes a 2-bit vari-
ety field for all simpleType element varieties, including list,
union, and atomic varieties. Where the simpleType element is
any atomic variety, the example layout 400 further includes a
1-bit enumeration presence field and a 5-bit ancestry identi-
fier field. Where the simpleType element is a boolean atomic
variety, the example layout 400 further includes a 1-bit pat-
tern presence field. Where the simpleType element is a string
atomic variety, the example layout 400 further includes a 2-bit
whitespace field and an 8-bit restricted characters field.
Where the simpleType element is an integer atomic variety,
the example layout 400 further includes an 8-bit integer width
field and a 16-bit minInclusive pointer field. It is understood
that the specific number of bits in each field in the example
layout 400 in other embodiments may differ from the number
shown in FIG. 4.

FIG. 5A is a flow chart of an example method 500 of
reducing the size of a simpleType element in an EXI schema
document, arranged in accordance with at least some embodi-
ments described herein. The method 500 may be imple-
mented, in some embodiments, by an EXI processing system,

US 9,128,912 B2

5

such as the example EXI processing system 100 of FIG. 1. For
example, the EXI schema encoder 102 of the EXI processing
system 100 of FIG. 1 may be configured to execute computer
instructions to perform operations of reducing the size of a
simpleType element from the XSD document 106 during the
encoding of the simpleType element into the EXI schema
document 108, as represented by one or more of blocks 502,
504, 506 and/or 550 of the method 500. Although illustrated
as discrete blocks, various blocks may be divided into addi-
tional blocks, combined into fewer blocks, or eliminated,
depending on the desired implementation. The method 500
will now be discussed with reference to both FIG. SA and
FIG. 1.

The method 500 may begin at block 502, in which each
simpleType element in an XSD document is identified. For
example, the EXI schema encoder 102 may parse through the
XSD document 106 to identify each simpleType element in
the XSD document 106.

In optional block 504, each simpleType element of the
XSD document is modified by eliminating one or more facets
from each simpleType element in the XSD document. For
example, the EXI schema encoder 102 may eliminate one or
more facets from each simpleType element in the XSD docu-
ment 106. As noted above, in at least some example embodi-
ments, these eliminated facets may include validation-spe-
cific facets from each simpleType element, such as those
listed above.

In block 506, each modified simpleType element in the
XSD document is transformed from an XSD simpleType
element to an encoded EXI simpleType element. For
example, the EXI schema encoder 102 may transform each
modified simpleType element with start and end tags in the
XSD document 106 to an encoded EXI simpleType element
expressed as a sequence of bits in the encoded EXI schema
document 108.

In optional block 550, one or more fields of each simple-
Type element in the XSD document are encoded into a single
fixed-length auxiliary field in the encoded EXI simpleType
element. For example, the EXI schema encoder 102 may
encode one or more fields of each simpleType element in the
XSD document 106 into a single fixed-length auxiliary field
in the corresponding encoded EXI simpleType element in the
encoded EXI schema document 108. The fixed-length auxil-
iary field may be the SIMPLE_TYPE_AUX field with the
example layout 400 of FIG. 4.

FIG. 5B is an expanded flow chart of an example method of
the block 550 (hereinafter the “method 550”) of the example
method 500 of FIG. 5A. The method 550 will now be dis-
cussed with reference to FIG. 5B, FIG. 1, and FIG. 4.

The method 550 may begin at block 552, in which the
variety value of the simpleType element is stored. For
example, the EXI schema encoder 102 may store the variety
value of a simpleType element of the XSD document 106 in
the 2-bit variety field of the example layout 400 in the EXI
schema document 108.

In decision block 554, it is determined whether the simple-
Type element is a union, list, or atomic variety. If the simple-
Type element is a union or list variety (“Union or List” at
decision block 504), then the method 550 is complete. If the
simpleType element is an atomic variety (“Atomic” at deci-
sion block 504), then the method 550 proceeds to block 556.
For example, the EXI schema encoder 102 may examine the
variety of the simpleType element of the XSD document 106
to determine whether the simpleType element is a union, list,
or atomic variety.

In block 556, an enumeration presence value and an ances-
try identifier value of the simpleType element are stored. For

10

15

20

25

30

35

40

45

50

55

60

65

6

example, the EXI schema encoder 102 may store the enu-
meration presence value of the simpleType element in the
1-bit enumeration presence field and the ancestry identifier
value simpleType element in the 5-bit ancestry identifier field
of'the example layout 400 in the EXI schema document 108.

In decision block 558, it is determined whether the simple-
Type element is a boolean atomic variety. For example, the
EXI schema encoder 102 may examine the variety of the
simpleType element of the XSD document 106 to determine
whether the simpleType element is a boolean atomic variety.
If so (“Yes” at decision block 558), then the method 550
proceeds to block 560 where a pattern presence value is
stored. For example, the EXI schema encoder 102 may store
the pattern presence value of the simpleType element in the
1-bit pattern presence field of the example layout 400 in the
EXI schema document 108. If not (“No” at decision block
558), then the method 550 proceeds to decision block 562.

In decision block 562, it is determined whether the simple-
Type element is a string atomic variety. For example, the EXI
schema encoder 102 may examine the variety of the simple-
Type element of the XSD document 106 to determine whether
the simpleType element is a string atomic variety. If so (“Yes”
at decision block 562), then the method 550 proceeds to block
564 where a whitespace value and a restricted characters
value are stored. For example, the EXI schema encoder 102
may store the whitespace value of the simpleType element in
the 2-bit whitespace field and the restricted characters value
of the simpleType element in the 8-bit restricted characters
field of the example layout 400 in the EXI schema document
108. Ifnot (“No” at decision block 562), then the method 550
proceeds to decision block 566.

In decision block 566, it is determined whether the simple-
Type element is an integer atomic variety. For example, the
EXI schema encoder 102 may examine the variety of the
simpleType element of the XSD document 106 to determine
whether the simpleType element is an integer atomic variety.
If so (“Yes” at decision block 566), then the method 550
proceeds to block 568 where an integer width value and a
mininclusive pointer value are stored. For example, the EXI
schema encoder 102 may store the integer width value of the
simpleType element in the 8-bit integer width field and the
mininclusive pointer value of the simpleType element in the
16-bit restricted characters field of the example layout 400 in
the EXI schema document 108. 4. If not (“No” at decision
block 566), then the method 550 is complete.

FIG. 6 illustrates an example XML Schema Definition
(XSD) document 600. The example XSD document 600
defines an atomic boolean simpleType element 602, an
atomic integer simpleType element 604, and an atomic string
simpleType element 606. Each of the simpleType elements
602, 604, and 606 is an XML element including start and end
“xsd:simpleType” tags. The XSD document 600 is a plain-
text human-readable document of ASCII text, where each
ASCII character occupies one (1) byte in memory. Therefore,
prior to be being encoded into an EXI schema document, such
as the EXI schema document 108 of FIG. 1, the XSD docu-
ment 600 occupies more than six-hundred-fifty (650) bytes in
memory, with each of the individual simpleType elements
602, 604, and 606 occupying more than one-hundred-sixty
(160) bytes in memory.

FIG. 7 illustrates the example atomic boolean simpleType
element 602 of the XSD document 600 of FIG. 6 as an
encoded simpleType element 700 according to the example
EXI schema datatype 200 of FIG. 2. FIG. 8 illustrates the
example atomic integer simpleType element 604 of the XSD
document 600 of FIG. 6 as an encoded simpleType element
800 according to the example EXI schema datatype 200 of

US 9,128,912 B2

7
FIG. 2. FIG. 9 illustrates the example atomic string simple-
Type element 606 of the XSD document 600 of FIG. 6 as an
encoded simpleType element 900 according to the example
EXI schema datatype 200 of FIG. 2.

As illustrated in FIGS. 7, 8, and 9, each of the encoded
simpleType elements 700, 800, and 900 occupy only thirty-
two (32) bytes once encoded into an EXI schema document,
such as the EXI schema document 108 of FIG. 1. Therefore,
compared to the unencoded simpleType elements 602, 604,
and 606 of the XSD document 600 of FIG. 6, which, as noted
above, each occupies more than one-hundred-sixty (160)
bytes in memory, each of the encoded simpleType elements
700, 800, and 900 occupies at least 80% less space in memory
(i.e. 100%-32 bytes/160 bytes=80%).

FIGS. 10A-10C illustrate the example atomic string
simpleType element 606 of the XSD document of FIG. 6 as an
encoded simpleType element 1000 according to the prior art
EXI schema datatype of FIG. 3. As illustrated in FIGS. 10A-
10C, the encoded simpleType element 1000 occupies eighty-
eight (88) bytes once encoded into an EXI schema document.
Therefore, compared to the encoded simpleType element 900
of FIG. 9 which was encoded according to an example
embodiment, the prior art encoded simpleType element 1000
of FIGS. 10A-10C occupies 2.75 times more space in
memory.

Therefore, the embodiments disclosed herein include
methods of reducing the size of a simpleType element in an
EXI schema document where the EXI schema document is
targeted for non-validation tasks. Because validation tasks
employ validation-specific data fields of a simpleType ele-
ment, where an EXI schema document is targeted for a non-
validation task, the size of the simpleType element in the EXI
schema document may be reduced by eliminating these vali-
dation-specific data fields. Thus, the embodiment disclosed
herein allow for more efficient exchange of schema informa-
tion which may be especially beneficial in devices with lim-
ited memory or storage capacity.

The embodiments described herein may include the use of
a special purpose or general-purpose computer including
various computer hardware or software modules, as dis-
cussed in greater detail below.

Embodiments described herein may be implemented using
computer-readable media for carrying or having computer-
executable instructions or data structures stored thereon.
Such computer-readable media may be any available media
that may be accessed by a general purpose or special purpose
computer. By way of example, and not limitation, such com-
puter-readable media may include non-transitory computer-
readable storage media including RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other storage
medium which may be used to carry or store desired program
code in the form of computer-executable instructions or data
structures and which may be accessed by a general purpose or
special purpose computer. Combinations of the above may
also be included within the scope of computer-readable
media.

Computer-executable instructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the subject matter defined in the
appended claims is not necessarily limited to the specific

10

15

20

25

30

40

45

50

55

60

65

8

features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

As used herein, the term “module” or “component” may
refer to software objects or routines that execute on the com-
puting system. The different components, modules, engines,
and services described herein may be implemented as objects
or processes that execute on the computing system (e.g., as
separate threads). While the system and methods described
herein are preferably implemented in software, implementa-
tions in hardware or a combination of software and hardware
are also possible and contemplated. In this description, a
“computing entity” may be any computing system as previ-
ously defined herein, or any module or combination of modu-
lates running on a computing system.

All examples and conditional language recited herein are
intended for pedagogical objects to aid the reader in under-
standing the invention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions. Although embodiments of the present inventions
have been described in detail, it should be understood that the
various changes, substitutions, and alterations could be made
hereto without departing from the spirit and scope of the
invention.

What is claimed is:

1. A method of reducing the size of a simpleType element
in an Efficient XML Interchange (EXI) schema document,
the method comprising:

modifying each simpleType element in an XML Schema

Definition (XSD) document by eliminating one or more
validation-specific facets from each simpleType ele-
ment; and
encoding the XSD document into an EXI schema docu-
ment by transforming each modified simpleType ele-
ment in the XSD document from an XSD simpleType
element with start and end tags to an encoded EXI
simpleType element expressed as a sequence of bits,

wherein each of the one or more validation-specific facets
includes a facet employed to validate whether a docu-
ment conforms to the XSD.

2. The method according to claim 1, further comprising
utilizing the encoded EXI schema document in a task other
than XML validation.

3. The method according to claim 1, further comprising
utilizing the encoded EXI schema document in a task of
encoding an XML document into an EXI document.

4. The method according to claim 1, further comprising
utilizing the encoded EXI schema document in a task of
decoding an XML document from an EXI document.

5. The method according to claim 1, further comprising
utilizing the encoded EXI schema document in a task of
encoding an XML document into a Comma-Separated Values
(CSV) document, a flat file document, or a JavaScript Object
Notation (JSON document).

6. The method according to claim 1, further comprising
utilizing the encoded EXI schema document in a task of
decoding an XML document from a Comma-Separated Val-
ues (CSV) document, a flat file document, or a JavaScript
Object Notation (JSON) document.

7. The method according to claim 1, wherein:

the ecliminated one or more validation-specific facets

include length, minLength, maxlength, pattern, maxIn-
clusive, maxExclusive, minExclusive, totalDigits, and
fractionDigits for all varieties of simpleType elements;
the eliminated one or more validation-specific facets fur-
ther include minInclusive for each simpleType element

US 9,128,912 B2

9

other than integer atomic variety simpleType elements

that are a bounded integer; and

the eliminated one or more validation-specific facets fur-

ther include whitespace for each simpleType element

other than string atomic variety simpleType elements.

8. A non-transitory computer-readable medium storing a
program that causes a processor to execute the method
according to claim 1.

9. A method of reducing the size of a simpleType element
in an Efficient XML Interchange (EXI) schema document,
the method comprising:

identifying each simpleType element in an XML Schema

Definition (XSD) document;

encoding the XSD document into an EXI schema docu-

ment by transforming each identified simpleType ele-
ment in the XSD document from an XSD simpleType
element with start and end tags to an encoded EXI
simpleType element expressed as a sequence of bits, the
encoding including, for each identified simpleType ele-
ment, encoding the following fields into a single fixed-
length auxiliary field:

a variety field for a union or list variety simpleType
element;

a variety field, an enumeration presence field, an ances-
try identifier field, and a pattern presence field for a
boolean atomic variety simpleType element;

a variety field, an enumeration presence field, an ances-
try identifier field, a whitespace field, and a restricted
characters field for a string atomic variety simpleType
element;

a variety field, an enumeration presence field, an ances-
try identifier field, an integer width field, and a min-
Inclusive pointer field for an integer atomic variety
simpleType element; or

a variety field, an enumeration presence field, and an
ancestry identifier field for any other atomic variety
simpleType element.

10. The method according to claim 9, wherein the length of
the single fixed-length auxiliary field is 4 bytes.

11. The method according to claim 10, wherein:

each variety field and each whitespace field has a length of

2 bits;

each enumeration presence field and each pattern presence

field has a length of 1 bit;

each ancestry identifier field has a length of 5 bits;

each restricted characters field has a length of 8 bits;

each integer width field has a length of 8 bits; and

each minlnclusive pointer field has a length of 16 bits.

12. The method according to claim 9, further comprising
utilizing the encoded EXI schema document in a task other
than XML validation.

13. The method according to claim 12, further comprising
utilizing the encoded EXI schema document in a task of
encoding an XML document into an EXI document, a
Comma-Separated Values (CSV) document, a flat file docu-
ment, or a JavaScript Object Notation (JSON) document.

14. The method according to claim 12, further comprising
utilizing the encoded EXI schema document in a task of
decoding an XML document from an EXI document, a
Comma-Separated Values (CSV) document, a flat file docu-
ment, or a JavaScript Object Notation (JSON) document.

15. The method according to claim 12, further comprising
eliminating one or more facets from each identified simple-
Type element in the XSD document prior to encoding the
XSD document into an EXI schema document.

10

—

5

20

25

30

35

40

45

55

65

10

16. The method according to claim 14, wherein:

the eliminated one or more facets include length, min-

Length, maxLength, pattern, maxInclusive, maxExclu-

sive, minExclusive, totalDigits, and fractionDigits for

all varieties of simpleType elements;

the eliminated one or more facets further include minln-

clusive for each simpleType element other than integer

atomic variety simpleType elements that are a bounded
integer; and

the eliminated one or more facets further include

whitespace for each simpleType element other than

string atomic variety simpleType elements.

17. A non-transitory computer-readable medium storing a
program that causes a processor to execute the method
according to claim 9.

18. A system including:

a non-transitory computer-readable medium storing a pro-

gram; and

an Efficient XML Interchange (EXI) schema encoder

including a processor configured to execute the pro-
gram, the program configured to cause the processor to
execute a method of reducing the size of a simpleType
element in an Efficient XML Interchange (EXI) schema
document, the method comprising:

modifying each simpleType element in an XML Schema

Definition (XSD) document by eliminating one or more

facets from each simpleType element;

encoding the XSD document into an EXI schema docu-

ment by transforming each modified simpleType ele-
ment in the XSD document from an XSD simpleType
element with start and end tags to an encoded EXI
simpleType element expressed as a sequence of bits, the
encoding including, for each modified simpleType ele-
ment, encoding the following fields into a single fixed-
length auxiliary field:

a variety field for a union or list variety simpleType
element;

a variety field, an enumeration presence field, an ances-
try identifier field, and a pattern presence field for a
boolean atomic variety simpleType element;

a variety field, an enumeration presence field, an ances-
try identifier field, a whitespace field, and a restricted
characters field for a string atomic variety simpleType
element;

a variety field, an enumeration presence field, an ances-
try identifier field, an integer width field, and a min-
Inclusive pointer field for an integer atomic variety
simpleType element; or

a variety field, an enumeration presence field, and an
ancestry identifier field for any other atomic variety
simpleType element.

19. The system according to claim 18, wherein:

the eliminated one or more facets include length, min-

Length, maxLength, pattern, maxInclusive, maxExclu-

sive, minExclusive, totalDigits, and fractionDigits for

all varieties of simpleType elements;

the eliminated one or more facets further include minln-

clusive for each simpleType element other than integer

atomic variety simpleType elements that are a bounded
integer; and

the eliminated one or more facets further include

whitespace for each simpleType element other than

string atomic variety simpleType elements.

20. The system according to claim 18, wherein the auxil-
iary field has a length of 4 bytes and includes:

a 2-bit variety field for a union or list variety simpleType

element;

US 9,128,912 B2

11

a 2-bit variety field, a 1-bit enumeration presence field, a
5-bit ancestry identifier field, and a 1-bit pattern pres-
ence field for a boolean atomic variety simpleType ele-
ment;

a 2-bit variety field, a 1-bit enumeration presence field, a
5-bit ancestry identifier field, a 2-bit whitespace field,
and an 8-bit restricted characters field for a string atomic
variety simpleType element;

a 2-bit variety field, a 1-bit enumeration presence field, a
5-bit ancestry identifier field, a 8-bit integer width field,
and a 16-bit minInclusive pointer field for an integer
atomic variety simpleType element; or

a 2-bit variety field, a 1-bit enumeration presence field, and
a 5-bit ancestry identifier field for any other atomic
variety simpleType element.

#* #* #* #* #*

10

15

12

